Extensions 1→N→G→Q→1 with N=C2 and Q=C24⋊C22

Direct product G=N×Q with N=C2 and Q=C24⋊C22
dρLabelID
C2×C24⋊C2232C2xC2^4:C2^2128,2258


Non-split extensions G=N.Q with N=C2 and Q=C24⋊C22
extensionφ:Q→Aut NdρLabelID
C2.1(C24⋊C22) = C23.257C24central extension (φ=1)32C2.1(C2^4:C2^2)128,1107
C2.2(C24⋊C22) = C23.261C24central extension (φ=1)64C2.2(C2^4:C2^2)128,1111
C2.3(C24⋊C22) = C23.570C24central stem extension (φ=1)32C2.3(C2^4:C2^2)128,1402
C2.4(C24⋊C22) = C25⋊C22central stem extension (φ=1)32C2.4(C2^4:C2^2)128,1411
C2.5(C24⋊C22) = C23.584C24central stem extension (φ=1)32C2.5(C2^4:C2^2)128,1416
C2.6(C24⋊C22) = C23.612C24central stem extension (φ=1)64C2.6(C2^4:C2^2)128,1444
C2.7(C24⋊C22) = C23.633C24central stem extension (φ=1)64C2.7(C2^4:C2^2)128,1465
C2.8(C24⋊C22) = C23.636C24central stem extension (φ=1)32C2.8(C2^4:C2^2)128,1468
C2.9(C24⋊C22) = C24.437C23central stem extension (φ=1)64C2.9(C2^4:C2^2)128,1485
C2.10(C24⋊C22) = C23.663C24central stem extension (φ=1)64C2.10(C2^4:C2^2)128,1495
C2.11(C24⋊C22) = C23.682C24central stem extension (φ=1)64C2.11(C2^4:C2^2)128,1514
C2.12(C24⋊C22) = C23.685C24central stem extension (φ=1)64C2.12(C2^4:C2^2)128,1517
C2.13(C24⋊C22) = C24.456C23central stem extension (φ=1)64C2.13(C2^4:C2^2)128,1536
C2.14(C24⋊C22) = C23.711C24central stem extension (φ=1)128C2.14(C2^4:C2^2)128,1543
C2.15(C24⋊C22) = C2411D4central stem extension (φ=1)32C2.15(C2^4:C2^2)128,1544
C2.16(C24⋊C22) = C4234D4central stem extension (φ=1)64C2.16(C2^4:C2^2)128,1551
C2.17(C24⋊C22) = C23.724C24central stem extension (φ=1)64C2.17(C2^4:C2^2)128,1556
C2.18(C24⋊C22) = C23.728C24central stem extension (φ=1)64C2.18(C2^4:C2^2)128,1560
C2.19(C24⋊C22) = C23.732C24central stem extension (φ=1)64C2.19(C2^4:C2^2)128,1564
C2.20(C24⋊C22) = C23.735C24central stem extension (φ=1)64C2.20(C2^4:C2^2)128,1567
C2.21(C24⋊C22) = C246Q8central stem extension (φ=1)32C2.21(C2^4:C2^2)128,1572
C2.22(C24⋊C22) = C4213Q8central stem extension (φ=1)128C2.22(C2^4:C2^2)128,1576

׿
×
𝔽